9-ALLENYL-9-BBN : A NEW REAGENT FOR THE EFFICIENT ALLENYLBORATION OF CARBONYL COMPOUNDS PRODUCING THE HOMOPROPARGYLIC ALCOHOLS IN HIGH PURITY AND YIELD

Herbert C. Brown,^{*} Uday R. Khire¹ and Uday S. Racherla²

H. C. Brown and R. B. Wetherill Laboratories of Chemistry Purdue University, West Lafayette, Indiana 47907

Abstract: A new reagent, 9-allenyl-9-BBN (1), has been developed for the convenient and efficient synthesis of a variety of homopropargylic alcohols via the allenylboration of aldehydes and ketones.

Homopropargylic alcohols serve as valuable intermediates in organic synthesis.³ A number of methods are available for the synthesis of these intermediates involving allenyl- or propargylorganometallics (M=Mg, Li, Ti, Zn, Al, Sn, Si and B).⁴ However, many of these methods are impractical on a large scale and suffer from a variety of problems. For instance, allenylmagnesium bromide reacts with carbonyl compounds rather nonselectively, and provides the corresponding homopropargylic alcohols in poor yields. With hindered ketones, the reagent provides a mixture of propargylic and allenic alcohols.^{4a,b} Favre and Gaudemar have shown that allenylboronate esters react with aldehydes to provide the corresponding homopropargylic alcohols. However, with hindered ketones, this reagent provides a mixture of homopropargylic and allenic alcohols.^{4n,o} Further, these reactions also require a higher temperature and longer reaction times. Consequently, there is a need for an efficient, regio- and chemoselective allenylborating agent.

In this communication, we wish to report the synthesis of such a new reagent, 9-allenyl-9-BBN (1), which undergoes a facile condensation with a representative aldehydes and ketones to provide homopropargylic alcohols in excellent isolated yields (Scheme I). Scheme I

Table I summarizes the results of allenylboration of representative carbonyl compounds with 1 at 25 $^{\circ}$ C in Et₂O. As is clear from the table, 9-allenyl-9-BBN (1) reacts with both aldehydes and ketones to provide the corresponding homopropargylic alcohols in 79-89% yields.

entry	carbonyl compound	homopropargylic alcohol ⁶	% yield ^c
1	H	HO	82
2	Н	HO H	88
3	Чн		89
4	PhH		82
5	Г. Цн	HOH	79
6			89
7			88 ^d
8	Ph	HO Ph	86
9	Å	HO	87
10	Ů	HO	88

Table I.	Allenyiboration	of Representative	Carbonyl	Compounds
	with B-/	Allenyi-9-BBN (1) [#]		

^{*a*} Reactions were carried out at 25 ^oC in Et₂O for 15 min. ^{*b*} Isolated yields of pure products. ^{*c*} Characterised by ¹H, ¹³C and IR spectra. ^{*d*} Reaction required 90 min for completion. 9-Allenyl-9-BBN (1) posseses several advantages. It can be very easily prepared and stored (under nitrogen) for long periods of time without any detectable change.^{5a} The allenylborations of carbonyl compounds with 1 can be precisely and conveniently monitored by ¹¹B NMR spectroscopy.^{5b}

The value of 9-allenyl-9-BBN (1) is further evident by its highly regioselective allenylborations of ketones such as diethyl ketone (4) and t-butyl methyl ketone (5), as compared to the behavior of allenylmagnesium bromide (2) and di(n-butyl) allenylboronate (3)

Table II summarizes these results. While the allenylation of 4 with 2 affords 88% of the homopropargylic alcohol and up to 12% of the undesired allenic alcohol, the allenylation of 4 with 3 affords only 41% of the desired product and 59% of the isomeric allenic alcohol. The results of allenylation of t-butyl methyl ketone (5) are similar. Thus, the allenylations of 5 with 2 and 3 provide 27% and 60% of the undesired allenic alcohol respectively. In marked contrast, the allenylboration of 4 and 5 with 9-allenyl-9-BBN (1) produces the homopropargylic alcohols exclusively.

entry	ketone	reagent	% product alcohol	
			homopropargylic	allenic
1	4	2	88	12 ^{a,b}
2	4	3	41	59°
3	4	1	100	0
4	5	2	73	27 ^{a,b}
5	5	3	40	60 ^c
6	5	1	100	0

 Table II. A Comparison of the Allenylborations of 4 and 5

 with the Reagents 1-3

^a Determined by ¹H NMR. ^b Only 60-70% conversion. ^cFrom ref. 4o.

The following procedure is representative for the synthesis of homopropargylic alcohols with 9-allenyl-9-BBN (1). To a stirred solution of 9-chloro-9-BBN (6.2 g, 40 mmol) in ether (40 mL), allenylmagnesium bromide in ether (40 mL, 1.0 M, 40 mmol) was added at -78 °C, under nitrogen.⁶ After 30 min, the mixture was allowed to warm to room temperature and stirred for 1 h. Then, stirring was discontinued to allow Mg⁺² salts to settle, and the clear supernatant layer was transferred into another flask. Following evaporation of the ether (14 mm, 1 h), the residue was distilled to obtain pure 9-allenyl-9-BBN (1) as a colorless liquid. bp. 69 °C/0.5 mm; yield, 4.8 g (75%). Next, cyclohexanone (0.98 g, 10 mmol) in ether (10mL) was added dropwise at 25 °C to the solution of 9-allenyl-9-BBN (1.6 g, 10 mmol) in ether (10 mL). The reaction mixture was stirred for 15 min and then oxidized with alkaline hydrogen peroxide. Following the usual workup procedure, 1-cyclohexyl-3-pentyne-1-ol⁴¹ (1.20 g, 88 %) was isolated in pure form.

Presently, we are exploring the chemo-, regio-, and stereoselectivities of this new reagent in the allenylboration of carbonyl compounds. These results will be reported soon.

Acknowledgement: We thank the National Institutes of Health (GM 10937) for the financial support of this research.

References and Notes

1. Post-doctoral Research Associate.

2. Research Scientist. Present address: Unilever Research U. S. Inc., 45 River Road, Edgewater, New Jersey 07020.

3. For recent applications, see: (a) Fryhle, C. B.; Williard, P. G.; Rybak, C. M. Tetrahedron Lett. 1992, 33, 2327. (b) Nicolaou, K. C.; Skokotas, G.; Furuya, S.; Suemune, H.; Nicolaou, D. C. Angew. Chem. Int. Ed. Engl. 1990, 29, 1064. (c) Hirama, M.; Tokuda, M.; Fujiwara, K. Synlett 1991, 651. (d) Chan, T.-H.; Arya, P. Tetrahedron Lett. 1989, 30, 4065.

4. (a) Mg: Moreau, J.-L. ; Gaudemar, M. Bull. Soc. Chim. France 1970, 2171. (b) Moreau, J.-L. ; Gaudemar, M. Ibid. 1970, 2175. (c) Li: Corey, E. J. ; Rucker, C. Tetrahedran Lett. 1982, 23, 719. (d) <u>Ti</u>: Furata, K. ; Ishiguro, M. ; Haruta, R. ; Ikeda, N. ; Yamamoto, H. Bull. Chem. Soc. Jpn 1984, 57, 2768. (e) Ishiguro, M. ; Ikeda, N. ; Yamamoto, H. J. Org. Chem. 1982, 47, 2225. (f) <u>Zn and Al</u>: Daniels, R. G. ; Paquette, L. A. Tetrahedron Lett. 1981, 22, 1579. (g) <u>Zn</u>: Zweifel, G.; Hahn, G. J. Org. Chem. 1984, 49, 4565. (h) Pearson, N. R.; Hahn, G.; Zweifel, G. J. Org. Chem. 1982, 47, 3364. (i) <u>Sn</u>: Marshall, J. A. ; Wang, X.-J. J. Org. Chem.. 1991, 56, 3211. (j) Marshall, J. A. ; Wang, X.-J. J. Org. Chem. 1990, 55, 6246. (k) <u>Si</u>: Danheiser, R. L.; Carini, D. J. J. Org. Chem. 1980, 45, 3925. (l) Danheiser, R. L.; Carini, D. J.; Kwasigroch, C. A. J. Org. Chem. 1986, 51, 3870. (m) <u>B</u>: Zweifel, G.; Backlund, S. J.; Leung, T. J. Am. Chem. Soc. 1978, 100, 5561. (n) Favre, E. ; Gaudemar, M. J. Organomet. Chem. 1974, 76, 297. (o) Favre, E. ; Gaudemar, M. Ibid, 1974, 76, 305. (p) Ikeda, N.; Arai, I.; Yamamoto, H. J. Am. Chem. Soc. 1986, 108,483. (q) Haruta, R.; Ishiguro, M.; Ikeda, N.; Yamamoto, H. J. Am. Chem. Soc. 1982, 104, 7667. (r) Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112, 878.

5. (a) 9-Allenyl-9-BBN (1) was stored as a 1.0 M solution in ether under nitrogen at 0 $^{\circ}$ C, and its chemical purity was monitored by ¹¹B NMR spectroscopy, with time. The reagent was observed to be highly stable under these conditions with no detectable change noted over one month. (b) In ¹¹B NMR, 9-allenyl-9-BBN (1) in ether appears at δ 79 ppm. However, as the allenylboration proceeds, the borinate product appears at δ 52 ppm.

6. Brown, H. C.; Kramer, G. W.; Levy, A. B.; Midland, M. M. Organic Syntheses via Boranes, Wiley-Interscience, New York, 1975.

(Received in USA 27 July 1992; accepted 16 September 1992)